随着充电基础设施的不断建设、快速充电桩的开发以及高功率密度电池的使用,这种情况都将成为过去。新材料和新技术的采用使得电动汽车电池的容量和功率密度得到了进一步提升,如今的锂离子电池的容量相当于同等大小铅蓄电池的7倍。另据Grand View Research的预测,全球电动汽车充电基础设施市场规模在2020年为150亿美元,预计从2021到2028年,其复合年增长率将达到33.4%。其中,电动汽车充电设备在商业场所的市场渗透率明显高于住宅场所。随着电动汽车的普及,有利于能源优化的快速充电桩乃至智能充电站的数量也将大幅增加。
不断进化的快速充电解决方案
快速、经济、安全和可靠是电动汽车充电解决方案必须兼顾的重要考量。在设计电动汽车直流充电桩时,常常要满足这些条件:增大输出功率,缩短充电时间;提高充电站设定尺寸内的功率密度;通过增大负荷并降低功耗来提高效率;降低每瓦电能的设计成本。因此,设计工程师必须克服如下技术挑战:
一是功耗和散热问题
真正的快充应允许电池以高达350kW的功率进行充电。以此来计算,97%的效率就意味着有9kW的功率损耗。在指定的高功率水平下向电动汽车供电,就会产生大量损耗和高温,因此可能会造成器件的损坏。
二是电池尺寸和充电电流之间的配比平衡问题
英飞凌有过一个测算,在给汽车电池充电时,以宝马i3汽车为例,自2016年以来,它的电池容量为95Ah。如果以100A的电流为100Ah电池连续充电,理论上需要一个小时才能充满。在目前400V的正常电压下,要在一小时内为100Ah的电池充电,大约需要40kW的充电功率。这还只是大约200公里续航范围内所需的电量,不能算是真正的快充。如果要进一步缩短充电时间,必须要增大充电电流,涉及充电桩任一参数的修改都需要多方面的权衡。
三是高功率输出的安全问题
综合充电标准(CCS)允许输出电压高于500V,因此只有训练有素的专业人员才能进行操作,并且对统一的充电插头有很高的材料和技术要求。
面对这些难题,半导体技术是使电动汽车快速充电达到更方便、更经济、更可持续的关键。